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1. Abstract

Transfer learning has become a pivotal technique
for leveraging pre-trained models to address data
scarcity challenges in deep learning applications.
This study investigates the potential of transfer
learning across different sensor modalities,
focusing on fine-tuning a geospatial foundation
model, Prithvi, pre-trained on optical imagery, for
segmentation tasks on a small Synthetic Aperture
Radar (SAR) dataset. We compare its performance
to a UNet model trained from scratch on the same
SAR dataset. Our primary hypothesis posits that
the pre-trained optical data features in the Prithvi
model can transfer effectively to SAR data,
resulting in improved performance during
fine-tuning. The experimental design evaluates
both models using key metric, namely, Intersection
over Union (loU) and , to assess their ability to
generalize despite the domain gap. Results from
this study aim to provide insights into the
transferability of features across modalities and the
implications for data-scarce geospatial applications.
This work advances understanding of
cross-modality transfer learning and highlights the
potential for integrating optical pre-training in
SAR-based tasks.

2. Introduction

Flood mapping is a critical task in disaster
management, providing essential information for
response planning and mitigation. However, a
significant challenge arises when attempting to train
deep learning models for flood mapping in regions
where data availability is limited. This project

addresses the problem of flood mapping for such
underrepresented regions by leveraging transfer
learning. The approach involves fine-tuning
models pre-trained on more data-rich regions or
using different sensor modalities, enabling the
development of accurate models for areas with
scarce data resources.

A key challenge lies in fine-tuning the recently
published geospatial foundation model, Prithvi [1],
for a different data modality. The Prithvi model is
pre-trained on optical imagery containing six bands
(coastal, blue, green, red, near-infrared, and
shortwave infrared 1). Both its encoder and
decoder are tailored for optical data [2], making
adaptation to Synthetic Aperture Radar (SAR)
images nontrivial. The SAR dataset used in this
study consists of 2-band images, representing
conditions before and after flooding. A significant
part of this work involved modifying the model's
decoder to accommodate and fine-tune on the SAR
dataset.

Figure 1: Prithvi model architecture

The importance of this work lies in the potential
efficiency gains. If the Prithvi model's pre-trained
features on optical data can effectively transfer to
SAR data, there would be no need to retrain
geospatial foundation models from scratch on SAR
data, saving substantial computational resources.
For example, training Prithvi originally required
hundreds of GPUs over weeks of computation. By



contrast, fine-tuning for new modalities could
dramatically reduce time and costs. The dataset
used in this study was prepared specifically for this
project. It comprises fewer than 150 SAR images,
each of size 256x256 pixels, with two bands (pre-
and post-flood) and corresponding flood masks.
These masks were generated using a thresholding
method via the Google Earth Engine (GEE)[3]
platform, a cloud-based tool that facilitates access
to large-scale geospatial datasets and

computational resources for remote sensing
analysis.
Preliminary results indicate the feasibility of

cross-modality transfer learning for flood mapping,
shedding light on the utility of leveraging pre-trained
geospatial foundation models for data-scarce
applications. This study not only advances
understanding of transfer learning across
modalities but also contributes to resource-efficient
approaches in geospatial modeling.

3. Related Works

Flood mapping has widely utilized optical satellite
data, such as Sentinel-2 and Landsat, due to its
rich spectral information [4]. However, cloud cover
during floods limits its usability, making Synthetic
Aperture Radar (SAR) a critical alternative for its
weather-independent capabilities. Deep learning
with SAR data poses challenges due to its differing
signal characteristics compared to optical data.

Geospatial foundation models, such as Prithvi,
have demonstrated success in various geospatial
tasks through pre-training on large-scale optical
datasets. While these models enable
resource-efficient fine-tuning, adapting them to
SAR data remains underexplored [5].
Cross-modality transfer learning has shown
promise in leveraging pre-trained features from
optical data for SAR tasks, yet existing studies
primarily focus on data fusion or smaller,
task-specific models.

This study investigates fine-tuning the Prithvi model
for SAR-based flood mapping using a small,
custom SAR dataset. By exploring the
transferability of optical pre-trained features, this
work addresses a key gap in leveraging foundation
models for modality-specific geospatial challenges.

4. Methods and Experiments

This study utilizes a custom-built dataset focusing
on two distinct flood scenarios: the Valencia flood in
October 2024 and the Mississippi flood in May
2019. The dataset preparation involved several
systematic steps, leveraging Sentinel-1 SAR
imagery and extensive pre- and post-processing to
ensure high-quality, balanced data suitable for
model fine-tuning and evaluation.

4.1. Data Collection

Sentinel-1 SAR images from before and after the
floods were retrieved using the Google Earth
Engine (GEE) platform, a cloud-based platform
designed for planetary-scale geospatial analysis.
GEE provides seamless access to a vast repository
of satellite imagery, including Sentinel-1 data, and
offers powerful tools for image processing and
analysis. lts Python and JavaScript APIs enable
users to perform tasks such as filtering by date,
location, and acquisition mode, directly on the
platform without the need for extensive local
storage or processing power. In this study, GEE
was instrumental in efficiently accessing SAR data
and applying a series of preprocessing filters, such
as temporal, spatial, and noise reduction filters, to
ensure the raw images were optimized for
subsequent analysis. This streamlined workflow
significantly reduced the complexity and time
required to prepare the dataset.

4.2. Preprocessing

To enhance image quality and relevance, the
following filters were applied: Temporal filter:
Ensured selection of images close to the flood



event dates. Spatial filter: Focused on the
flood-affected regions. Instrument mode filter:
Selected images captured in Interferometric Wide
Swath mode for consistency. Polarization filter:
Used VV and VH polarizations to highlight flood
signals. Orbit pass filter: Choose images from
descending orbits for uniformity. Resolution filter:
Standardized the resolution to ensure
comparability. Noise reduction filter: Applied to
remove speckle and other artifacts inherent to SAR
data.

4.3. Flood Mask Generation

Figure 2 - from left to right, before flood, after flood, flood mask

Following the SPIDER framework (Synthetic
Perturbation and Inundation Detection using
Empirical Relationships), pre- and post-flood

Sentinel-1 SAR images were analyzed to generate
an initial flood mask. The SPIDER framework is a
well-established methodology in remote sensing for
detecting flood extents by exploiting differences in
backscatter intensities between pre- and post-flood
conditions. It involves applying thresholding
techniques to identify regions with significant
changes, indicative of flooding. This approach is
particularly effective for SAR data, where
water-covered areas typically exhibit low
backscatter due to their smooth surface properties.
After generating the initial flood mask, further
refinement steps were undertaken to improve its
accuracy and usability. Permanent water bodies
were removed using auxiliary datasets, such as
hydrological databases or water occurrence layers,
to ensure only newly flooded areas were
represented. Additionally, regions with a slope
greater than 5% were excluded, as steep areas

are less prone to flooding and could introduce false
positives in the flood mask. The slope information
was derived from Digital Elevation Models (DEMs)
integrated with the dataset. These refinement steps
ensured that the flood mask was both accurate and
focused on relevant areas, improving its reliability
for training segmentation models. This meticulous
process resulted in high-quality flood masks
tailored for each image pair, essential for building a
robust and meaningful dataset for subsequent
analysis.

Figure 3 - from top to down, before flood, after flood, and flood mask
4.4. Post-Processing

Flood events are typically rare, leading to an
imbalanced dataset where over 90% of the area
remains unflooded. To address this, images with
less than 10% flooded area were excluded,
resulting in a more balanced dataset. This step
improved the training process by reducing the
dominance of the unflooded class.




Figure 4 - from left to right, before flood, after flood, flood mask
4.5. Dataset Summary

The final dataset comprises 196 pairs of two-band
images, where Band 1 represents the pre-flood
condition and Band 2 represents the post-flood
condition, each with a resolution of 256x256 pixels.
Accompanying these image pairs are refined flood
masks that delineate the flooded areas, offering
sufficient detail for segmentation tasks. The dataset
is organized into three folders: 156 images for
training, 20 for validation, and 20 for testing. This
dataset is uploaded on google drive and available
at the link in the reference section [4]

4.6. Fine-Tuning the Prithvi Model

The Prithvi geospatial foundation  model,
pre-trained on large-scale optical imagery, was
adapted for SAR-based flood mapping. The
encoder from the original model, pre-trained on six
optical bands (red, green, blue, short-wave
infra-red-1, short-wave infra-red-2, and near
infrared), was retained for feature extraction, while
the decoder was replaced with a new architecture
to process the 2-band SAR images (band 1 for
before the flood, and band 2 for after flood). The
modified model was fine-tuned using the training
subset of the dataset, optimizing its parameters for
the flood segmentation task. This fine-tuning step
aimed to leverage the pre-trained encoder’s feature
representations to adapt to the new modality
efficiently.

4.7. Training the UNet Network

For comparison, a UNet network was trained from
scratch using the same SAR dataset. UNet is a
well-established deep learning architecture widely
used for image segmentation tasks due to its ability
to capture fine-grained spatial details while
maintaining contextual understanding. The network
consists of a symmetric encoder-decoder structure
with skip connections, which allow for the seamless

integration of high-resolution features from the
encoder to the decoder, enhancing segmentation
accuracy. For this study, the UNet was adapted to
process 2-band input images (pre- and post-flood
conditions) and output corresponding flood masks.
Training was conducted using the training subset of
the dataset, with hyperparameters such as learning
rate, batch size, and optimizer settings carefully
tuned to minimize loss and maximize segmentation
accuracy. This architecture served as a baseline to
evaluate the effectiveness of transfer learning with
the Prithvi model.

5. Results

The experiments were designed to evaluate the
performance of two models, the Prithvi geospatial
foundation model (fine-tuned) and the UNet
network (trained from scratch), for flood mapping
using a small SAR dataset. The results are
summarized as follows:

5.1. Training and Validation for UNet
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Figure 5: Training & validation loss for UNet

The training and validation loss curves for the UNet
model over 30 epochs demonstrate a consistent
downward trend for both lines, indicating that the
model is effectively learning from the training data
without overfitting to the validation set. This
suggests that the UNet architecture is capable of
learning meaningful patterns from the small SAR



dataset, albeit without the benefit of pre-trained
features.

5.2. Fine-Tuning Prithvi

The fine-tuning process for the Prithvi model
successfully adapted its pre-trained encoder to the
SAR dataset by training a new decoder head. The
output logs from the fine-tuning code indicate
convergence during training, suggesting that the
model was able to learn from the small dataset
effectively by leveraging its pre-trained optical
features.

Figure 6: Prithvi model fine-tuning log

5.3. Intersection over Union (loU) comparison

A direct comparison of the loU scores between the
two models highlights the superiority of the
fine-tuned Prithvi model. The IloU for Prithvi
significantly outperformed UNet, achieving a value
of approximately 2.2, compared to the UNet's 0.6.
This substantial difference confirms the hypothesis
that the features learned by Prithvi during its
pre-training phase on optical data are transferable
and provide a strong foundation for learning
SAR-based flood segmentation with minimal data.
The results underscore the advantage of transfer
learning for small datasets and cross-modality
tasks.
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Figure 7: Comparing loU for Prithvi vs. UNet over 30 epochs

6. Conclusion

This study investigated the use of cross-modality
transfer learning for flood mapping with SAR data by
comparing a fine-tuned Prithvi geospatial foundation
model and a UNet network trained from scratch. The
results demonstrate that the Prithvi model,
pre-trained on optical imagery, significantly
outperforms the UNet model on a very small SAR
dataset, achieving a much higher loU score. This
confirms the hypothesis that features learned from
optical data can be effectively transferred to
SAR-based tasks, providing a resource-efficient
solution for data-scarce scenarios.

The findings highlight the potential of leveraging
pre-trained geospatial models for tasks requiring
domain adaptation, particularly when training data is
limited. Fine-tuning pre-trained models not only
saves computational resources but also enhances
performance compared to ftraining from scratch.
Future work could explore extending this approach
to other geospatial tasks and sensor modalities, as
well as further optimizing the integration of
pre-trained features for cross-modality applications.
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